I. L’EAU OXYGÉNÉE (6 points)

L’eau oxygénée est une solution aqueuse de peroxyde d’hydrogène de formule H_2O_2.
À température ordinaire, le peroxyde d’hydrogène se décompose lentement selon l’équation-bilan :

$$\text{H}_2\text{O}_2 \rightarrow 2\text{H}_2\text{O} + \text{O}_2$$

I) 1. Recopier l’équation de la réaction en nommant les produits formés.
2. Préciser les deux couples redox intervenant.
3. Quel nom particulier est donné à cette réaction d’oxydo-réduction ?

II) Sur l’étiquette d’un flacon d’eau oxygénée, le titre T en volumes a été effacé.
Un dosage va permettre de le retrouver en déterminant au préalable la concentration molaire C du peroxyde d’hydrogène.

II.1. On dose la solution de peroxyde d’hydrogène avec une solution violette de permanganate de potassium. Les deux demi-équations électroniques sont les suivantes :

$$\text{MnO}_4^- + 8 \text{H}^+ + 5 \text{e}^- \rightarrow \text{Mn}^{2+} + 4 \text{H}_2\text{O}$$

$$\text{H}_2\text{O}_2 \rightarrow \text{O}_2 + 2 \text{H}^+ + 2\text{e}^-$$

En déduire l’équation-bilan du dosage.
On rappelle que dans une équation-bilan ne doivent pas figurer d’électrons e^-.

4PYMSME1
II.2. Recopier succinctement le schéma du dispositif de dosage en indiquant les noms des solutions et des matériels utilisés :

Nom des solutions

Nom des matériels

II.3. Définir l’équivalence d’un dosage.

II.4. La concentration $C_{\text{MnO}_4^-}$ du peroxyde d’hydrogène se détermine à partir du volume $V_{\text{MnO}_4^-\text{(aq)}}$ de permanganate versé à l’équivalence par la relation :

$$C_{\text{H}_2\text{O}_2} = \frac{5 \cdot C_{\text{MnO}_4^-} \cdot V_{\text{MnO}_4^-\text{(aq)}}}{2 \cdot V_{\text{H}_2\text{O}_2}}$$

Données :

$C_{\text{MnO}_4^-} = 2.00 \times 10^{-2}$ mol.L$^{-1}$

$V_{\text{MnO}_4^-\text{(aq)}} = 10.7$ mL

$V_{\text{H}_2\text{O}_2} = 10.0$ mL

a) Calculer la concentration $C_{\text{H}_2\text{O}_2}$ en peroxyde d’hydrogène.
b) Le titre T se calcule par la relation $T = 11.2 \cdot C$

Calculer T pour $C_{\text{H}_2\text{O}_2} = 6.40 \times 10^{-2}$ mol.L$^{-1}$

II. FABRICATION DU SAVON DE MARSEILLE (6 points)

I. La matière première :

Le savon de Marseille est fabriqué à partir d’huile d’olive qui contient l’oléine de formule chimique :

```
    O
   / \   O
  CH   CH     \C_{17}H_{33}
```

4PYMSME1
I.1. Recopier la formule de l’oléine puis entourer et nommer les 3 groupes fonctionnels identiques de cette molécule.

I.2. Pourquoi qualifie-t-on l’oléine de triglycéride ?

II. La saponification :

Dans un grand chaudron, l’huile contenant l’oléine est mélangée avec de la soude. On obtient après chauffage du savon et du glycérol. Le glycérol a pour formule :

\[
\begin{align*}
\text{CH}_2 & \quad \text{OH} \\
\text{CH} & \quad \text{OH} \\
\text{CH}_2 & \quad \text{OH}
\end{align*}
\]

II.1. Recopier la formule du glycérol puis entourer et nommer la fonction chimique porté par ce composé.

II.2. La réaction de saponification est-elle partielle ou totale ?

III. Le relargage

Cette opération consiste à séparer le mélange obtenu après saponification en 2 phases : une phase aqueuse et une phase solide constituée par le savon appelé oléate de sodium de formule : \(\text{C}_{17}\text{H}_{33}\text{COO}^- + \text{Na}^+ \)

III.1. Le glycérol est-il soluble dans la phase aqueuse c’est à dire dans l’eau ?

III.2. Recopier la formule de l’ion oléate \(\text{C}_{17}\text{H}_{33}\text{COO}^- \) et indiquer où se situe la partie hydrophile et la partie hydrophobe de cet ion.

III.3. Montrer que la masse molaire du savon est \(M_s = 304 \text{ g.mol}^{-1} \).

III.4. Sachant qu’une mole d’oléine permet d’obtenir trois moles de savon, calculer la masse m du savon formé si la quantité d’oléine introduite dans le mélange réactionnel était : \(n_0 = 1000 \text{ mol} \).

Données :

Masses molaires en g.mol\(^{-1}\) :

\[
\begin{align*}
\text{C} & : 12 \\
\text{H} & : 1 \\
\text{O} & : 16 \\
\text{Na} & : 23
\end{align*}
\]

4PYMSME1
1) a) Définir la masse volumique \(\rho \) d’un corps en précisant les unités du système international.

b) Montrer que la masse volumique \(\rho \) de la solution d’eau glucosée de volume \(V = 0.5 \) L et de masse \(m = 0.525 \) kg est \(\rho = 1050 \) kg.m\(^{-3}\).

2) La perfusion nécessite d’introduire dans la veine au point A un cathéter relié par un tube au fiasco diffuseur.

a) La tension veineuse \(T \) représente la différence de pression entre les points A et B (voir schéma). \(T \leq 60 \) mm de mercure.

Montrer que la tension veineuse \(T \) en pascals vaut pratiquement \(T = 8000 \) Pa.

On rappelle que \(1 \) mm de mercure est équivalent à \(133.3 \) Pa.

b) Calculer la hauteur minimale \(h \) entre le point B situé à la surface libre de la perfusion et le point d’injection A pour que le liquide puisse pénétrer dans la veine. On rappelle la loi de la statique des fluides :

\[
T = \rho \cdot g \cdot h \quad \text{avec} \quad g = 10 \ \text{N.kg}^{-1} \quad \text{(intensité de la pesanteur)}
\]

3) Le débit volumique \(D \) de la perfusion vaut \(D = 4.10^{-6} \) m\(^3\).s\(^{-1}\). La section du cathéter est \(S = 4.10^{-5} \) m\(^2\).

Quelle est la vitesse d’écoulement \(v \) de l’eau glucosée ?